Benha University

 Faculty of Engineering at Shoubra Electrical Engineering Department

Sheet 3

1. A terminated transmission line with $Z 0=60 \Omega$ has a reflection coefficient at the load of $\Gamma=0.4\left[60^{\circ}\right.$. (a) What is the load impedance? (b) What is the reflection coefficient 0.3λ away from the load? (c) What is the input impedance at this point?
2. A 100Ω transmission line has an effective dielectric constant of 1.65 . Find the shortest open-circuited length of this line that appears at its input as a capacitor of 5 pF at 2.5 GHz . Repeat for an inductance of 5 nH .
3. A radio transmitter is connected to an antenna having an impedance $80+$ $\mathrm{j} 40 \Omega$ with a 50Ω coaxial cable. If the 50Ω transmitter can deliver 30 W when connected to a 50Ω load, how much power is delivered to the antenna?
4. For a purely reactive load impedance of the form $\mathrm{ZL}=\mathrm{j} \mathrm{X}$, show that the reflection coefficient magnitude $|\Gamma|$ is always unity. Assume that the characteristic impedance ZO is real.
5. Design a quarter-wave matching transformer to match a 40Ω load to a 75 Ω line
6. Consider the quarter-wave matching transformer circuit shown in the accompanying figure. Derive expressions for V^{+}and V^{-}, the respective amplitudes of the forward and reverse traveling waves on the quarter-wave line section, in terms of V^{i}, the incident voltage amplitude.

Good Luck
Dr. Gehan Sami

